Published 10/2024
Created by Latvian Trading Solutions
MP4 | Video: h264, 1280×720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English | Duration: 25 Lectures ( 3h 42m ) | Size: 2.03 GB
A complete guide to developing linear regression based models for algorithmic trading in MQL5
What you’ll learn:
The concept of Linear Regression and its application in Algorithmic Trading
How to Develop a Linear Regression model on a spread sheet
How to code a Linear Regression model Indicator in MQL5
How to develop a Linear Regression Strategy and code an Expert advisor in MQL5
Requirements:
Basics of MQL5
Description:
Simple linear regression is a statistical method used to model the relationship between two variables: an independent variable (x) and a dependent variable (y). It assumes a linear relationship between the two variables and aims to find the best-fitting straight line that represents this relationship.The equation for a simple linear regression model is:y = ax + bWhere:y is the dependent variable (the variable we want to predict).x is the independent variable (the variable used to make predictions).a is the slope of the line, representing the rate of change of y with respect to x.b is the y-intercept, representing the value of y when x is zero.While simple linear regression is a statistical technique, it can also be considered as a machine learning algorithm. In machine learning, the goal is to build models that can learn from data and make predictions. Linear regression fits this framework because it learns the relationship between x and y from a given dataset and uses this learned relationship to make predictions for new data points. As neural networks learn the best non-linear relationships between data by finding the weights that best fit the data, linear regression aims to find the best values of a and b that best describe the linear relationship between variables.In this course, our aim is to build a linear regression model in mql5 that seeks to predict the closing prices of a currency pair given its specific bar index. We shall start by creating a linear regression model on a spread sheet to basically explain the calculations involved in creating a linear regression model. We shall then develop our linear regression model as an mql5 indicator by coding it using the mql5 programming language. After that, we shall develop our trading strategy as an mql5 expert advisor coded using the mql5 algorithmic trading language. We shall use the linear regression model we created as an indicator to analyze data and find patterns we can use to profit from the market. We shall base our trading logic on the fact that if price goes beyond one or two standard deviations from its predicted or expected price, it has to reverse and go back to its expected price. Hence our strategy will be a mean reversion type of strategy.For those that are still finding their way with MQL5, as long as you understand the basics of MQL5, this course is for you. We will patiently guide you through every step of the strategy development process and walk you through every line of code we shall craft. Hopefully, by the end of the course, you will have gained the necessary skills to code similar models and trading strategies and be able to appreciate how linear regression models can be an asset in developing your own trading ideas based on the ideas that shared in this course.So hit hard on that enroll button now and join me in this incredible journey of coding a linear regression model using the mql5 algorithmic trading language.
Who this course is for:
Anyone willing to learn about the applications of Linear Regression in Market analysis and timeseries forecasting
Homepage